Associative Knowledge Graph Using Fuzzy Clustering and Min-Max Normalization in Video Contents
نویسندگان
چکیده
منابع مشابه
Adaptive Color Image Segmentation Using Fuzzy Min-Max Clustering
This paper proposes a novel system for color image segmentation called “Adaptive color image segmentation using fuzzy min-max clustering (ACISFMC)”. The present work is an application of Simpson’s fuzzy min-max neural network (FMMN) clustering algorithm. ACISFMC uses a multilayer perceptron (MLP) like network which perform color image segmentation using multilevel thresholding. Threshold values...
متن کاملMax-min Intuitionistic Fuzzy Matrix of an Intuitionistic Fuzzy Graph
In this paper we introduce the Max-Min intuitionistic fuzzy matrix M (G) of an intuitionistic fuzzy graph. And the extreme energy of M (G) is defined. And also we give the explicit expression for the coefficients of the characteristic polynomial of M (G) . These concepts are illustrated with real time example. AMS Subject Classification: 03E72, 05C50
متن کاملGeneral fuzzy min-max neural network for clustering and classification
This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms developed by Simpson. The GFMM method combines the supervised and unsupervised learning within a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering...
متن کاملFuzzy min-max neural networks - Part 2: Clustering
In an earlier companion paper [56] a supervised learning neural network pattern classifier called the fuzzy min-max classification neural network was described. In this sequel, the unsupervised learning pattern clustering sibling called the fuzzy min-max clustering neural network is presented. Pattern clusters are implemented here as fuzzy sets using a membership function with a hyperbox core t...
متن کاملMax-Min averaging operator: fuzzy inequality systems and resolution
Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. Some basic properties and theoretical aspects of the problem are derived and four necessary and suffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3080180